首页
登录 | 注册

内存分配的原理__进程分配内存有两种方式,分别由两个系统调用完成:brk和mmap系统调用

如何查看进程发生缺页中断的次数

         用ps -o majflt,minflt -C program命令查看。

          majflt代表major fault,中文名叫大错误,minflt代表minor fault,中文名叫小错误

          这两个数值表示一个进程自启动以来所发生的缺页中断的次数

发成缺页中断后,执行了那些操作?

当一个进程发生缺页中断的时候,进程会陷入内核态,执行以下操作: 
1、检查要访问的虚拟地址是否合法 
2、查找/分配一个物理页 
3、填充物理页内容(读取磁盘,或者直接置0,或者啥也不干) 
4、
建立映射关系(虚拟地址到物理地址) 
重新执行发生缺页中断的那条指令 
如果第3步,需要读取磁盘,那么这次缺页中断就是majflt,否则就是minflt。 

内存分配的原理

从操作系统角度来看,进程分配内存有两种方式,分别由两个系统调用完成:brk和mmap(不考虑共享内存)。

1、brk是将数据段(.data)的最高地址指针_edata往高地址推;

2、mmap是在进程的虚拟地址空间中(堆和栈中间,称为文件映射区域的地方)找一块空闲的虚拟内存

     这两种方式分配的都是虚拟内存,没有分配物理内存在第一次访问已分配的虚拟地址空间的时候,发生缺页中断,操作系统负责分配物理内存,然后建立虚拟内存和物理内存之间的映射关系。


在标准C库中,提供了malloc/free函数分配释放内存,这两个函数底层是由brk,mmap,munmap这些系统调用实现的。


下面以一个例子来说明内存分配的原理:

情况一、malloc小于128k的内存,使用brk分配内存,将_edata往高地址推(只分配虚拟空间,不对应物理内存(因此没有初始化),第一次读/写数据时,引起内核缺页中断,内核才分配对应的物理内存,然后虚拟地址空间建立映射关系),如下图:


1、进程启动的时候,其(虚拟)内存空间的初始布局如图1所示。
      其中,mmap内存映射文件是在堆和栈的中间(例如libc-2.2.93.so,其它数据文件等),为了简单起见,省略了内存映射文件。
      _edata指针(glibc里面定义)指向数据段的最高地址。 
2、
进程调用A=malloc(30K)以后,内存空间如图2:
      malloc函数会调用brk系统调用,将_edata指针往高地址推30K,就完成虚拟内存分配。
      你可能会问:只要把_edata+30K就完成内存分配了?
      事实是这样的,_edata+30K只是完成虚拟地址的分配,A这块内存现在还是没有物理页与之对应的,等到进程第一次读写A这块内存的时候,发生缺页中断,这个时候,内核才分配A这块内存对应的物理页。也就是说,如果用malloc分配了A这块内容,然后从来不访问它,那么,A对应的物理页是不会被分配的。 
3、
进程调用B=malloc(40K)以后,内存空间如图3。

情况二、malloc大于128k的内存,使用mmap分配内存,在堆和栈之间找一块空闲内存分配(对应独立内存,而且初始化为0),如下图:


4、进程调用C=malloc(200K)以后,内存空间如图4:
      默认情况下,malloc函数分配内存,如果请求内存大于128K(可由M_MMAP_THRESHOLD选项调节),那就不是去推_edata指针了,而是利用mmap系统调用,从堆和栈的中间分配一块虚拟内存
      这样子做主要是因为::
      brk分配的内存需要等到高地址内存释放以后才能释放(例如,在B释放之前,A是不可能释放的,这就是内存碎片产生的原因,什么时候紧缩看下面),而mmap分配的内存可以单独释放。
      当然,还有其它的好处,也有坏处,再具体下去,有兴趣的同学可以去看glibc里面malloc的代码了。 
5、进程调用D=malloc(100K)以后,内存空间如图5;
6、进程调用free(C)以后,C对应的虚拟内存和物理内存一起释放。

7、进程调用free(B)以后,如图7所示:
        B对应的虚拟内存和物理内存都没有释放,因为只有一个_edata指针,如果往回推,那么D这块内存怎么办呢
当然,B这块内存,是可以重用的,如果这个时候再来一个40K的请求,那么malloc很可能就把B这块内存返回回去了。 
8、进程调用free(D)以后,如图8所示:
        B和D连接起来,变成一块140K的空闲内存。
9、默认情况下:
       当最高地址空间的空闲内存超过128K(可由M_TRIM_THRESHOLD选项调节)时,执行内存紧缩操作(trim)。在上一个步骤free的时候,发现最高地址空闲内存超过128K,于是内存紧缩,变成图9所示。



本文网址:http://www.bnee.net/article/45652.html

相关文章

  •     内存分配是操作系统必须面对的一个环节,除非这个系统本身不需要内存安排,所有业务可以通过全局数据和堆栈搞定.内存分配其实不困难,但是由内存引申出来的东西就比较复杂了.早前没有MMU,系统本身的空间和用户空间没有优先级之分,所以不同的程 ...
  • 操作系统核心原理-5.内存管理(下):段式内存管理
    一.分页系统的缺点 分页系统存在的一个无法容忍,同时也是分页系统无法解决的一个缺点就是:一个进程只能占有一个虚拟地址空间.在此种限制下,一个程序的大小至多只能和虚拟空间一样大,其所有内容都必须从这个共同的虚拟空间内分配. 二.分段管理系统 ...
  • Intersec内存系列-第2部分:了解进程的内存
    从虚拟内存到物理内存 在上篇文章中,我们介绍了一种进程所占内存分类的方法.通过2个坐标轴划分了4个象限:私有/共享和匿名/文件支持.我们也介绍了共享机制的复杂性和所有内存基本上是由内核回收的事实. 这里我们谈论的都是虚拟内存.所有都是关于( ...
  • 选自:调用malloc时发生了什么       Linux内存分配小结--malloc.brk.mmap brk() and sbrk() change the location of the program break, which de ...
  • Flink 原理与实现:内存管理
    原文链接: http://wuchong.me/blog/2016/04/29/flink-internals-memory-manage/如今,大数据领域的开源框架(Hadoop,Spark,Storm)都使用的 JVM,当然也包括 Fl ...
  • 【进程的内存布局四 番外篇-1】高端内存
    文章选自:linux中的物理地址和虚拟地址中的第二个参考链接来应该是来自于一本书,由于没找到,特参看:Linux中的物理和虚拟存储空间布局 注原文中:Linux线性地址空间 == Linux虚拟地址空间 ==  Linux地址空间 == L ...
  • Android内存管理篇 - adj的概念与进程adj级别控制
    本文主要介绍Android的lowmemorykiller的oom_adj的相关概念,以及根据一些案例来阐述了解oom_adj对于做Android应用开发的重要意义. 一.lowmeorykiller中进程的分类以及各类进程的adj值   ...